

ESDXXV52D-HA Series

Description

The ESDXXV52D-HA series is designed to protect voltage sensitive components from ESD and transient voltage events. Excellent clamping capability, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its small size, ultra-low capacitance values, it is very suitable for signal port and board space speed transmission is very small places, such as Ethernet, mobile phones, MP3 players, digital cameras and other portable.

DFN1610TN1

Feature

- ♦ 1098 ~ 1980 Watts Peak Pulse Power per Line (tp=8/20µs)
- Protects one I/O line (Undirectional)
- ♦ Low clamping voltage
- ♦ Working voltages: 3.3V~48V
- Low leakage current
- ◆ IEC61000-4-5 (Lighting) 13.8~ 100A (8/20 µ s)
- IEC61000-4-4 (EFT) 40A (5/50 η s)
- lack IEC61000-4-2 (ESD) \pm 30kV (air), \pm 30kV (contact)

Functional Diagram

Applicantions

- Cell Phone Handsets and Accessories
- Microprocessor based equipment
- Personal Digital Assistants (PDA's)
- Notebooks, Desktops, and Servers
- Portable Instrumentation
- Peripherals
- Charger Protection

Mechanical Data

- ▶ DFN1610TN Package
- Molding Compound Flammability Rating: UL 94V-O
- ◆ Weight 3.5 Millgrams (Approximate)
- Quantity Per Reel : 3,000pcs
- Reel Size : 7 inch
- Lead Finish: Lead Free

Mechanical Characteristics

Symbol	Parameter	Value	Units
P_pp	Peak Pulse Power (tp=8/20 µ s waveform)ESD03V52D-HA~ESD48V52D-HA	1098~1980	Watts
TJ	Operating Junction Temperature Range	-55 to +150	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C
T∟	Soldering Temperature	260	°C

ESDXXV52D-HA Series

Electrical Characteristics (@25°C Unless Otherwise Specifiled)

Part Number		Stand-Off Voltage		Test Current I _T (mA)	V c		V c		Maximum Reverse
Part Number		V _{RMW}			(Max.)	(@A)	(Max.)	(@A)	Leakage I _R @V _{RWM} (uA)
ESD03V52D-HA	UT3	3.3	4.0	1.0	17.8	70	19.8	100	40.0
ESD05V52D-HA	UT5	5.0	6.0	1.0	16.5	60	20	90	10.0
ESD08V52D-HA	UT8	8.0	8.0	1.0	19	50	23	74	10.0
ESD12V52D-HA	UTA	12.0	13.3	1.0	20	25	28.5	57	1.0
ESD15V52D-HA	UTC	15.0	16.5	1.0	25.5	20	34	45	1.0
ESD18V52D-HA	UTD	18.0	19.0	1.0	28	20	38	40	1.0
ESD24V52D-HA	UTE	24.0	26.2	1.0	38	15	45	28	1.0
ESD30V52D-HA	UTF	30.0	31.0	1.0	43.8	10	50.8	24.8	1.0
ESD33V52D-HA	UTH	33.0	35.0	1.0	49.7	10	61.4	20.4	1.0
ESD36V52D-HA	UTJ	36.0	40.0	1.0	60.8	10	70.5	17.7	1.0
ESD48V52D-HA	UTK	48.0	49.5	1.0	73.9	10	79.6	13.8	1.0

Characteristics Curves

Fig1. 8/20µs Pulse Waveform

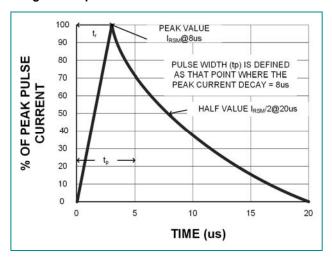
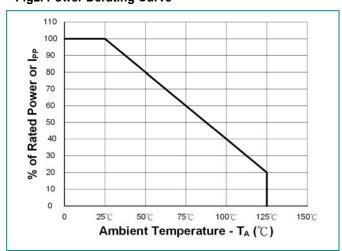



Fig2. Power Derating Curve

ESDXXV52D-HA Series

Figure 3. Clamping Voltage vs. Peak Pulse Current (tp=8/20us)

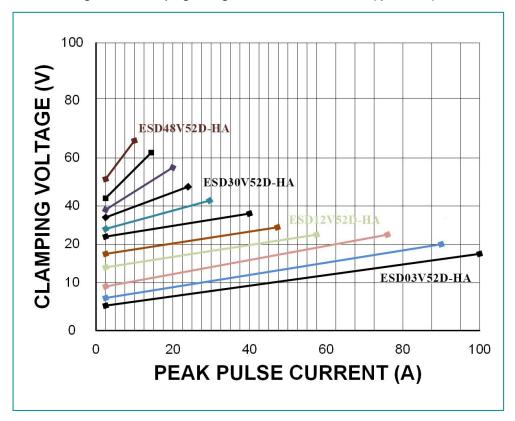
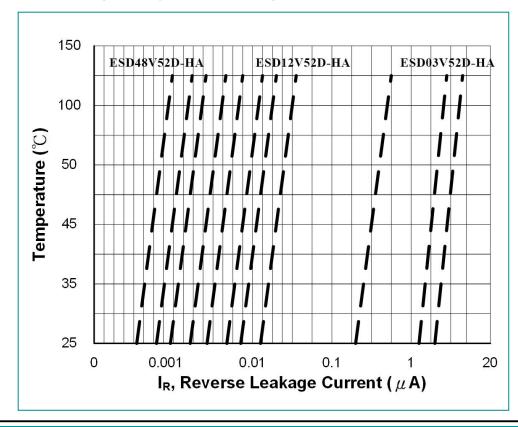
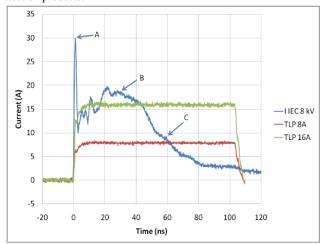
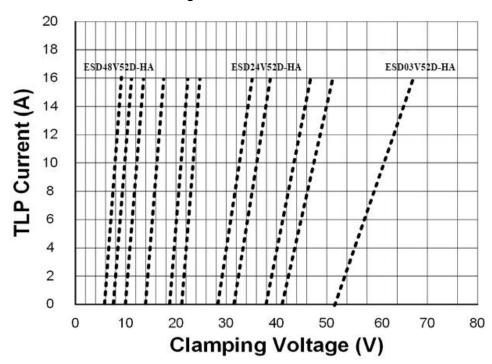



Figure 4. Typic Reverse Leakage vs. Temperature



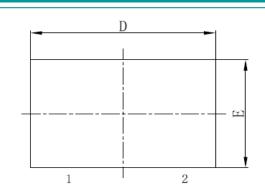
ESDXXV52D-HA Series

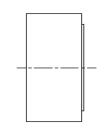
Transimission Line Pulse (TLP)

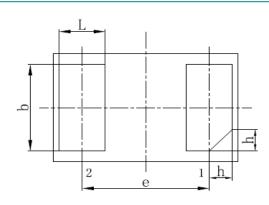

Transmission Line Pulse (TLP) is a measurement technique used in the Electrostatic Discharge (ESD) arena to characterize performance attributes of devices under ESD stresses. TLP is able to obtain current versus voltage (I–V) curves in which each data point is obtained with a 100 ns long pulse, with currents up to 40 A. TLP was first used in the ESD field to study human body model (HBM) in integrated circuits, but it is an equally valid tool in the field of system level ESD. The applicability of TLP to system level ESD is illustrated in Figure 1, which compares an 8 kV IEC 61000–4–2 current waveform with TLP current pulses of 8 a d 16 A. The current levels and time duration for the pulses are similar and the initial rise time for the TLP pulse is comparable to the rise time of the IEC 61000–4–2's initial current spike. This application note will give a basic introduction to TLP measurements and explain the datasheet parameters extracted from TLP for SDI Technology's protection products.

Comparison of a Current
Waveform of IEC 61000-4-2
with TLP Pulses at 8 and 16 A.

The IEC 61000–4–2 ESD waveforms is true to the Standard and is shown here as captured on an oscilloscope. The points A, B, and C show the points on the waveforms specified in IEC 61000–4–2.

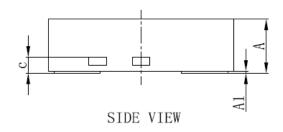


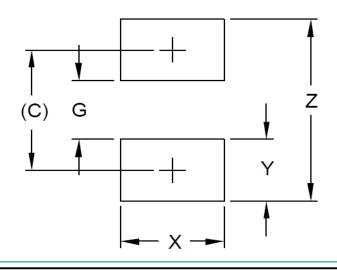




ESDXXV52D-HA Series

DFN1610TN Package Outline & Dimensions





TOP VIEW

BOTTOM VIEW

SYMBOL	MILLIMETER			
STMBOL	MIN	NOM	MAX	
A	0.45	0.50	0. 55	
A1		0.02	0.05	
b	0.75	0.80	0.85	
С	0.10	0. 15	0. 20	
D	1.55	1.60	1.65	
e	1. 10BSC			
Е	0. 95	1.00	1.05	
L	0.35	0.40	0. 45	
h	0. 15	0. 20	0. 25	
载体尺寸 (Mil)		34X35		

DIMENSIONS				
סוואבואסוטאס				
DIM	MILLIMETERS			
O	(1.225)			
O	0.60			
X	1.00			
Y	0.625			
Ζ	1.85			